Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway.

نویسندگان

  • V Cleghon
  • P Feldmann
  • C Ghiglione
  • T D Copeland
  • N Perrimon
  • D A Hughes
  • D K Morrison
چکیده

In Drosophila, specification of embryonic terminal cells is controlled by the Torso receptor tyrosine kinase. Here, we analyze the molecular basis of positive (Y630) and negative (Y918) phosphotyrosine (pY) signaling sites on Torso. We find that the Drosophila homolog of RasGAP associates with pY918 and is a negative effector of Torso signaling. Further, we show that the tyrosine phosphatase Corkscrew (CSW), which associates with pY630, specifically dephosphorylates the negative pY918 Torso signaling site, thus identifying Torso to be a substrate of CSW in the terminal pathway. CSW also serves as an adaptor protein for DRK binding, physically linking Torso to Ras activation. The opposing actions of CSW and RasGAP modulate the strength of the Torso signal, contributing to the establishment of precise boundaries for terminal structure development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is stil...

متن کامل

Identification of genomic regions that interact with a viable allele of the Drosophila protein tyrosine phosphatase corkscrew.

Signaling by receptor tyrosine kinases (RTKs) is critical for a multitude of developmental decisions and processes. Among the molecules known to transduce the RTK-generated signal is the nonreceptor protein tyrosine phosphatase Corkscrew (Csw). Previously, Csw has been demonstrated to function throughout the Drosophila life cycle and, among the RTKs tested, Csw is essential in the Torso, Sevenl...

متن کامل

The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila.

Corkscrew (csw) encodes a nonreceptor protein tyrosine phosphatase (PTPase) that has been implicated in signaling from the Torso receptor tyrosine kinase (RTK). csw mutations, unlike tor mutations, are associated with zygotic lethality, indicating that Csw plays additional roles during development. We have conducted a detailed phenotypic analysis of csw mutations to identify these additional fu...

متن کامل

Spatially distinct downregulation of Capicua repression and tailless activation by the Torso RTK pathway in the Drosophila embryo

Specification of the terminal regions of the Drosophila embryo depends on the Torso RTK pathway, which triggers expression of the zygotic genes tailless and huckebein at the embryonic poles. However, it has been shown that the Torso signalling pathway does not directly activate expression of these zygotic genes; rather, it induces their expression by inactivating, at the embryonic poles, a unif...

متن کامل

Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila.

RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 2 6  شماره 

صفحات  -

تاریخ انتشار 1998